lozone Filesystem Benchmark

I0zone is a filesystem benchmark tool. The benchmanerates and measures a variety of file operations.
lozone has been ported to many machines and runs undeop®naying systems. This document will
cover the many different types of operations that atedess well as coverage of all of the command line
options.

lozone is useful for determining a broad filesystemyaigbf a vendor’s computer platform. The
benchmark tests file /0O performance for the follogvoperations.

Read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random read/write,
pread/pwrite variants, aio_read, aio_write, mmap,

While computers are typically purchased with an applicationind it is also likely that over time the
application mix will change. Many vendors have enhanced dpeirating systems to perform well for
some frequently used applications. Although this acaelethe I/O for those few applications it is also
likely that the system may not perform well for othpplications that were not targeted by the operating
system. An example of this type of enhancement is: Ds¢alddany operating systems have tested and
tuned the filesystem so it works well with databa¥ésile the database users are happy, the other users
may not be so happy as the entire system may be giViafthe system resources to the database users at
the expense of all other users. As time rolls orsylseem administrator may decide that a few more office
automation tasks could be shifted to this machine. Taetheay now shift from a random reader
application (database) to a sequential reader. The usgrdigtover that the machine is very slow when
running this new application and become dissatisfied Wwathdecision to purchase this platform. By using
lozone to get a broad filesystem performance coverageuyer is much more likely to see any hot or cold
spots and pick a platform and operating system that ie melt balanced.

Features:
* ANSII ‘C’ source.
* POSIX async /0.
* Mmap() file I/O.
¢ Normal file I/O.
* Single stream measurement.
e Multiple stream measurement.
e POSIX pthreads.
e Multi-process measurement.
« Excel importable output for graph generation.
e /O Latency data for plots.
e 64-bit compatible source.
e Large file compatible.
e Stonewalling in throughput tests to eliminate stragefects.
* Processor cache size configurable.
* Selectable measurements with fsync, O_SYNC.
« Options targeted for testing over NFS.

Building 10zone

Once you have obtained the source for I0zone you shewkl 12 files.
e iozone.c (source code)

e libasync.c (source code)

* makefile (makefile)

e libbif.c (source code)

* lozone_msword_98.doc (documentation in Word format)

e iozone.1 (documentation in nroff format)

e gnuplot.dem (sample gnuplot file)

e gnuplotps.dem (sample gnuplot file that generates postscitiptit)
* read_telemetry (sample file for read telemetry file)

e write_telemetry (sample file for write telemetryelil

* Run_rules.doc (run rules to get reasonable results)

e Changes.txt (log of changes to lozone since its beginning)

Type: make

The makefile will display a list of supported platformigkRhe one that matches your
configuration and then type: make target

That's it. You're done. There is no need to have astalhprocedures as 10zone creates all of its
files in the current working directory. Just copy logdn wherever you wish to test the filesystem
performance and then run it. Or you can use-fle@mmand line option to specify a target path,
for example, a path/filename in a new filesystem.

Before you run lozone please read the run rules at the baiin of this document.

Examples of running lozone:
The simplest way to get started is to try the autanmatide.
iozone —a
If you wish to generate graphs then you may wishrto ¢a Excel mode.
iozone —Ra (Output can be ingabusing space and tab delimited)
iozc())nre —Rab output.wks (Output file “output.wks” is a byrfarmat spreadsheet)
If you have more than 512 Mbytes of memory then you neettitedse the maximum file size to
ﬁklzrger value. For example if your system has 1 Gbyteeofiory then you would want to try something

iozone —Ra —g 2G

If you only care about read/write and do not wish tandghe time to perform all of the tests, then
you may wish to limit the testing like:

iozone-Ra—g2G—-i0-il
If you are running lozone over NFS on an NFS client o1 may wish to use:
iozone —Rac
This tells lozone to include the close() in the mieament. This may be needed if the client is

running NFS version 3. Including the close() helps to retheelient side cache effects of NFS version 3.
If you use a file size that is larger than the amountehory in the client then the ‘c’ flag is not needed.

Definitions of the tests

Write : This test measures the performance of writing afiewwWhen a new file is written not
only does the data need to be stored but also the oddrifeemation for keeping track of where the data
is located on the storage media. This overhead is dhketinetadata” It consists of the directory
information, the space allocation and any other dsgacated with a file that is not part of the data
contained in the file. It is normal for the initiatite performance to be lower than the performance-of r
writing a file due to this overhead information.

Re-write: This test measures the performance of writindedliiat already exists. When a file is
written that already exists the work required is lesh@asrtetadata already exists. It is normal for the
rewrite performance to be higher than the performahegiting a new file.

Read This test measures the performance of reading atingxiie.

Re-Read This test measures the performance of reading toéitevas recently read. It is normal
for the performance to be higher as the operating sygésm@rally maintains a cache of the data for files
that were recently read. This cache can be used téysatigls and improves the performance.

Random Read This test measures the performance of reading avith accesses being made to
random locations within the file. The performance afystem under this type of activity can be impacted
by several factors such as: Size of operating systerafeecaumber of disks, seek latencies, and others.

Random Write: This test measures the performance of writingeaviith accesses being made to
random locations within the file. Again the performanta system under this type of activity can be
impacted by several factors such as: Size of operatitgnsigsscache, number of disks, seek latencies, and
others.

Random Mix: This test measures the performance of reading anidgvatfile with accesses
being made to random locations within the file. Againghdormance of a system under this type of
activity can be impacted by several factors such ae:@iaperating system’s cache, number of disks, seek
latencies, and others. This test is only availabteroughput mode. Each thread/process runs either the
read or the write test. The distribution of read/wistdone on a round robin basis. More than one
thread/process is required for proper operation.

Backwards Read This test measures the performance of reading dditkwards. This may
seem like a strange way to read a file but in facetlaee applications that do this. MSC Nastran is an
example of an application that reads its files backwakith MSC Nastran, these files are very large
(Gbytes to Thytes in size). Although many operatirgiesys have special features that enable them to
read a file forward more rapidly, there are very fgerating systems that detect and enhance the
performance of reading a file backwards.

Record Rewrite: This test measures the performance of writing arvritng a particular spot
within a file. This hot spot can have very interestinigavgors. If the size of the spot is small enoughtto fi
in the CPU data cache then the performance is vgty Hithe size of the spot is bigger than the CPU data
cache but still fits in the TLB then one gets a déferlevel of performance. If the size of the spohigér
than the CPU data cache and larger than the TLB bufitstith the operating system cache then one gets
another level of performance, and if the size of that & bigger than the operating system cache then one
gets yet another level of performance.

Strided Read This test measures the performance of reading wifitea strided access
behavior. An example would be: Read at offset zero fength of 4 Kbytes, then seek 200 Kbytes, and
then read for a length of 4 Kbytes, then seek 200 Kbyt@s@on. Here the pattern is to read 4 Kbytes and
then

Seek 200 Kbytes and repeat the pattern. This again is altgpacation behavior for applications that
have data structures contained within a file and is acaeagparticular region of the data structure.
Most operating systems do not detect this behavior pleiment any techniques to enhance the
performance under this type of access behavior.

This access behavior can also sometimes produce tirigrpsrformance anomalies. An example would
be if the application’s stride causes a particular disk, $triped file system, to become the bottleneck.

Fwrite: This test measures the performance of writindeausing the library function fwrite().
This is a library routine that performs buffered wripe@tions. The buffer is within the user’s address
space. If an application were to write in very smakkgransfers then the buffered & blocked I/0
functionality of fwrite() can enhance the performancéhefapplication by reducing the number of actual
operating system calls and increasing the size of éimsfers when operating system calls are made.
This test is writing a new file so again the overheaith®fmetadata is included in the measurement.

Frewrite: This test measures the performance of writindeaufsing the library function fwrite().
This is a library routine that performs buffered & bledkwrite operations. The buffer is within the user’s
address space. If an application were to write in verglissize transfers then the buffered & blocked 1/0
functionality of fwrite() can enhance the performancéhefapplication by reducing the number of actual
operating system calls and increasing the size of éimsfers when operating system calls are made.
This test is writing to an existing file so the performaslbould be higher as there are no metadata
operations required.

Fread: This test measures the performance of reading adihg the library function fread(). This
is a library routine that performs buffered & blocked repdrations. The buffer is within the user’s
address space. If an application were to read in veayl sime transfers then the buffered & blocked 1/0
functionality of fread() can enhance the performance oapipdication by reducing the number of actual
operating system calls and increasing the size of éimsfers when operating system calls are made.

Freread: This test is the same as fread above except that itethithe file that is being read was
read in the recent past. This should result in higheoprence as the operating system is likely to have
the file data in cache.

Specialized tests:

Mmap: Many operating systems support the use of mmap() taarfilginto a user’s address
space. Once this mapping is in place then stores t@tasdn in memory will result in the data being
stored going to a file. This is handy if an application egsto treat files as chunks of memory. An example
would be to have an array in memory that is also beiaigtained as a file in the files system.

The semantics of mmap files is somewhat different tleamal files. If a store to the memory location is
done then no actual file I/O may occur immediately. Uise of the msyc() with the flags MS_SYNC, and
MS_ASYNC control the coherency of the memory anditeeA call to msync() with MS_SYNC wiill
force the contents of memory to the file and waitifdéo be on storage before returning to the applinatio
A call to msync() with the flag MS_ASYNC tells the opting system to flush the memory out to storage
using an asynchronous mechanism so that the applicatioretnay into execution without waiting for the
data to be written to storage.

This test measures the performance of using the mmegahanism for performing 1/O.

Async 1/0O: Another mechanism that is supported by many operatingrsyste performing /0
is POSIX async I/0O. The application uses the PO&Kdard async I/O interfaces to accomplish this.
Example: aio_write(), aio_read(), aio_error(). This tesasures the performance of the POSIX async I/O
mechanism.

Command Line options:

The following is the output from the built in help. Eagition’s purpose is explained in this section of the

manual.

Usage: iozone [-s filesize_Kb] [-r record_size Kb Jpéth]filename]
[-i test] [-E] [-p] [-a] [-A] [-Z] [-Z] [-m] [-M] [- t children] [-h] [-0]
[-I min_number_procs] [-u max_number_procs] [-v] [-R]][-X
[-d microseconds] [-F pathl path2...] [-V pattern] [-jcss]
[-T1 [-C] [-B] [-D] [-G] [-1] [-H depth] [-k depth] [-U mount_point]
[-S cache_size] [-O] [-K] [-L line_size] [-g max_files_Kb]
[-n min_filesize_Kb] [-N] [-Q] [-P start_cpu] [-c] [-e} b filename]
[-J milliseconds] [-X filename] [-Y filename] [-w] W]
[-y min_recordsize_Kb] [-g max_recordsize_Kb] [-+m filems]
[-+n] [-+N] [-+u] [-+d] [-+p percent_read] [-+r}t | [-+A #]

What do they all mean ?

-a
Used to select full automatic mode. Produces output thatscaelldested file operations
for record sizes of 4k to 16M for file sizes of 64k to 512M.

-A
This version of automatic mode provides more coveragedmgumes a bunch of time.
The—a option will automatically stop using transfer sizesslthan 64k once the file
size is 32 MB or larger. This saves time. Hfeoption tells lozone that you are willing to
wait and want dense coverage for small transfers even thie file size is very large.
NOTE: This option is deprecated in lozone version 3.61. 4dge-i 0 —i linstead.

-b filename
lozone will create a binary file format file in Exagmpatible output of results.

-B
Use mmap() files. This causes all of the temporaeg fileing measured to be created
and accessed with the mmap() interface. Some applisgti@fer to treat files as arrays
of memory. These applications mmap() the file and fhst access the array with loads
and stores to perform file 1/O.

-C
Include close() in the timing calculations. This isfukenly if you suspect that close() is
broken in the operating system currently under testnlbeauseful for NFS Version 3
testing as well to help identify if the nfs3_commit isrking well.

-C
Show bytes transferred by each child in throughput testisgfulif your operating
system has any starvation problems in file I/O orrgcess management.

-d #
Microsecond delay out of barrier. During the throughesitstall threads or processes are
forced to a barrier before beginning the test. Normallyof the threads or processes are
released at the same moment. This option allows odelay a specified time in
microseconds between releasing each of the procestagads.

-D
Use msync(MS_ASYNC) on mmap files. This tells the ojiegasystem that all the data in

the mmap space needs to be written to disk asynchronously

-e
Include flush (fsync,fflush) in the timing calculations

-E
Used to select the extension tests. Only availabl®wore platforms. Uses pread interfaces.

-f filename
Used to specify the filename for the temporary file uridst. This is useful when
the unmount option is used. When testing with unmount betveséit is necessary for
the temporary file under test to be in a directory thatlie unmounted. It is not possible
to unmount the current working directory as the medezone is running in this directory.

-F filename filename filename ...
Specify each of the temporary file names to be usdtkithroughput testing. The number
of names should be equal to the number of processkeeads that are specified.

-g #
Set maximum file size (in Kbytes) for auto mode.

-G
Use msync(MS_SYNC) on mmap files. This tells the ofiggatystem that all the data in the
mmap space needs to be written to disk synchronously.

-h
Displays help screen.

-H#
Use POSIX async I/O with async operations. lozone will use POSIX async lith &
bcopy from the async buffers back into the applicetibuffer. Some versions of MSC
NASTRAN perform I/O this way. This technique is used by igptibns so that the async
I/0 may be performed in a library and requires no chaingéhe applications internal model.

i #
Used to specify which tests to run. (O=write/rewriterebe/re-read, 2=random-read/write
3=Read-backwards, 4=Re-write-record, 5=stride-read, Gtefingifwrite, 7=fread/Re-fread,
8=random mix, 9=pwrite/Re-pwrite, 10=pread/Re-pread, 11=puiRepwritev, 12=preadv/Re-
preadv).
One will always need to specify 0 so that any of thiedohg tests will have a file to measure.
-i # -i # -i #is also supported so that one may select more thansine te

Use VXFS VX_DIRECT for all file operations. Tells th&FS filesystem that all operations
to the file are to bypass the buffer cache and go directlisk.

_j H#
Set stride of file accesses to (# * record size). Sitide read test will read records at this stride.
-J # (in milliseconds)

Perform a compute delay of this many milliseconds befach 1/O operation. See also
-X and-Y for other options to control compute delay.

-k #
Use POSIX async I/0O (no bcopy) wittasync operations. lozone will use POSIX async
I/0 and will not perform any extra bcopys. The bufigsed by lozone will be handed to
the async I/O system call directly.

-K
Generate some random accesses during the normal testing.

-l #
Set the lower limit on number of processes to run.Whaning throughput tests this
option allows the user to specify the least number afgg®es or threads to start. This
option should be used in conjunction with thieoption.

-L#
Set processor cache line size to value (in bytesls Tadone the processor cache line size.
This is used internally to help speed up the test.

-m
Tells lozone to use multiple buffers internally. Sorpplizations read into a single
buffer over and over. Others have an array of buffens option allows both types of
applications to be simulated. lozone’s default behasitw re-use internal buffers.
This option allows one to override the default and tonuskiple internal buffers.

-M
lozone will call uname() and will put the string in thatput file.

-n#
Set minimum file size (in Kbytes) for auto mode.

-N
Report results in microseconds per operation.

-0
Writes are synchronously written to disk. (O_SYNC)oloz will open the files with the
O_SYNC flag. This forces all writes to the file to gompletely to disk before returning to
the benchmark.

-0
Give results in operations per second.

P
This purges the processor cache before each file aperkizone will allocate another
internal buffer that is aligned to the same procesaonhe boundary and is of a size that
matches the processor cache. It will zero fill #itsernate buffer before beginning each test.
This will purge the processor cache and allow orse®the memory subsystem without
the acceleration due to the processor cache.

-P#
Bind processes/threads to processors, starting mgtcpu# Only available on some
platforms. The first sub process or thread will begirtte specified processor. Future processes
or threads will be placed on the next processor. Onamtélenumber of cpus is exceeded then
future processes or threads will be placed in a rourid fashion.

-q #
Set maximum record size (in Kbytes) for auto mode. @agalso specify
-q #k (size in Kbytes) org #m (size in Mbytes) okq #g (size in Gbytes).
See-y for setting minimum record size.

Q
Create offset/latency files. lozone will createtaty versus offset data files that can be
imported with a graphics package and plotted. This isilB®ffinding if certain offsets
have very high latencies. Such as the point where UR&li@itate its first indirect block.
One can see from the data the impacts of the extechtibns for extent based filesystems
with this option.

-r#
Used to specify the record size, in Kbytes, to test. @agalso specify
-r #k (size in Kbytes) ofr #m (size in Mbytes) ofr #g (size in Gbytes).

-R
Generate Excel report. lozone will generate an Excepatibie report to standard out. This
file may be imported with Microsoft Excel (space delimjtand used to create a graph of
the filesystem performance. Note: The 3D graphselerm oriented. You will need to
select this when graphing as the default in Excel isomented data.

-S#
Used to specify the size, in Kbytes, of the file to.t®te may also specify
-s #k (size in Kbytes) ors #m(size in Mbytes) ofs #g(size in Gbytes).

-S#
Set processor cache size to value (in Kbytes). THésltzone the size of the processor cache.
It is used internally for buffer alignment and for thegaufunctionality.

-t#
Run lozone in a throughput mode. This option allows thetosgpecify how
many threads or processes to have active during th&euneeaent.

-T
Use POSIX pthreads for throughput tests. Available ongota that have POSIX threads.

-u#
Set the upper limit on number of processes to run. Wiraning throughput tests this
option allows the user to specify the greatest nurobprocesses or threads to start.
This option should be used in conjunction with theption.

-U mountpoint
Mount point to unmount and remount between tests. lozdhenmount and remount
this mount point before beginning each test. This guaratitaethe buffer cache does not
contain any of the file under test.

-V
Display the version of lozone.

-V o#
Specify a pattern that is to be written to the tenpdibe and validated for accuracy in
each of the read tests.

-w
Do not unlink temporary files when finished using them. kdérem present in the filesystem.

-W
Lock files when reading or writing.

Turn off stone-walling. Stonewalling is a technique usegtivally to lozone. It is used during
the throughput tests. The code starts all threads oegses and then stops them on a barrier.
Once they are all ready to start then they areeldbsed at the same time. The moment that
any of the threads or processes finish their work thewritiire test is terminated and
throughput is calculated on the total I/O that was completed tips point. This ensures

that the entire measurement was taken while all gptheesses or threads were running

in parallel. This flag allows one to turn off therstwvalling and see what happens.

-X filename
Use this file for write telemetry information. Thiefcontains triplets of information:
Byte offset, size of transfer, compute delay in millgets. This option is useful if one has
taken a system call trace of the application that istefest. This allows lozone to replicate the
I/O operations that this specific application generatesprovide benchmark results for this file
behavior. (if column 1 contains # then the line is@ment)

-y #
Set minimum record size (in Kbytes) for auto mode. Ongatsd specify
-y #k (size in Kbytes) ory #m (size in Mbytes) ory #g (size in Ghytes).
See—(for setting maximum record size.

-Y filename
Use this file for read telemetry information. The fdontains triplets of information:
Byte offset, size of transfer, compute delay in millgets. This option is useful if one has
taken a system call trace of the application that istefest. This allows lozone to replicate the
I/0O operations that this specific application generatesprovide benchmark results for this file
behavior. (if column 1 contains # then the line tomment)

-z
Used in conjunction witka to test all possible record sizes. Normally lozomsts testing
of small record sizes for very large files when usedlirautomatic mode. This option forces
lozone to include the small record sizes in the autiortests also.

-Z
Enable mixing mmap 1/O and file I/O.

-+m filename
Use this file to obtain the configuration informatiortioé clients for cluster testing. The file
contains one line for each client. Each line has tfiets. The fields are space delimited. A #
sign in column zero is a comment line. The first fislthe name of the client. The second field is
the path, on the client, for the working directory whiezone will execute. The third field is the
path, on the client, for the executable lozone.
To use this option one must be able to execute commants ctients without being challenged
for a password. lozone will start remote executiomdipg “rsh”.

-+n
No retests selected. Use this to prevent retests funning.

-+N
No truncating or deleting of previous test file befdre sequential write test. Useful only after -w
is used in previous command to leave the test filednepfor reuse. This flag is of limited use,

when a single retest is not enough, or to easily cbwtren sequential write retests occur without
file truncation or deletion.

-+u
Enable CPU utilization mode.

-+d
Enable diagnostic mode. In this mode every byte is validathis is handy if one suspects a
broken I/O subsystem.

-+p percent_read
Set the percentage of the thread/processes that vidkmerandom read testing. Only valid in
throughput mode and with more than 1 process/thread.

-+r
Enable O_RSYNC and O_SYNC for all I/O testing.

-+t
Enable network performance test. Requires -+m

-+A
Enable madvise. 0 = normal, 1=random, 2=sequential, 3rded} 4=willneed.
For use with options that activate mmap() file 1/0e:S8&

What can | see:

The following are some graphs that were generated thenbzone output files.

kB/sec

Read performance

CPU cache effect

pusl

140000 -"hp"

oo, %Illllll:..?..."|l|
' R, A,

Eﬂﬂﬂﬂmﬂi—lﬂm"I"

Not measured

40000 -I
i i | | r-f-l‘ ol
ZDDDE '\‘-1"-!’-- '4-4
- ¥
T3 =
™
=
kB file % @ kB record

[Lu}
[anl
Lo
Lo
o

262144

Buffer cache effect

W 300000-320000
W 250000-300000
m 260000-250000
W 240000-250000
0220000-240000
0200000-220000
I 150000-200000
W 160000-1530000
0 140000-180000
W 120000-140000
O 100000-120000
| 50000-100000
O E0000-30000
040000-50000

W 20000-40000

@0-20000

1/0 performance after
caches are exceeded

From the graph above one can clearly see the buffaedsalping out for file sizes that are less than

256MB but after that the actual disk I/O speed can be s¢smnote that the processor cache effects can

be seen for file sizes of 16 Kbytes to 1Mbyte.

Re-read performance
CPU cache effect

800000 T4 |
50000 r——l]_| Buffer cache effect
Ll Tt |
500000 T T T
750000 _%““2745_%_ T 0E50000-300000
700000 o | T T ®500000-550000
50000 T T W 750000-500000
00000 EHHE“‘“%HE_E: m 700000-750000
550000 = L T m 550000-700000
\Blsoc ig%%g% T m G00000-650000
B £50000-500000
400000 L T T B
Tl [T O500000-550000
350000 ot S I e e S W g
300000 || Z““h m 450000-500000
250000 T b T W 400000-450000
-l |
200000 g 0 350000-400000
150000 ®300000-350000
1 ggggg =250000-300000
0 W 200000-250000
) O 150000-200000
e - 0 100000-150000
Not measured © . = 8 m 50000-100000
o < b=
8 o o = m0-50000
kB file g 3 - &7 kB record
[} % w0
= o 3 =
8 I 0= 1/0 performance after
& caches are exceeded

The graph above is displaying the impact of re-readifilg.a\otice that the processor cache is now very
important and causes the sharp peak. The next plat#ae ight is buffer cache and finally above 256MB
the file no longer fits in the buffer cache and reahdi@ speeds can be seen.

Read throughput scaling

‘___,.-"'
_-—"//
| 1
300000 T
|~
/,-”
= |1
250000+ L]
/_,/
annnnn 41 ol @ 250000-300000
d W 200000-250000
KBisec o J/’/ O 150000-200000
L1 O 100000-150000
]

W 50000-100000
24 O 0-50000

1DIZIDIZID~|/

50000 4

G Disks

Processes

The graph above was created by running lozone multipkstand then graphing the combination of the
results. Here the graph is showing the throughput peeioce as a function of processes and number of

disks participating in a filesystem. (disk striping) Tdu®d news is that on this system as one adds disks
the throughput increases. Not all platforms scaleedb w

Re-write performance

CPU cache effect

: Buffer cache effect
300000 |]
270000 o
240000 N H 270000-300000
210000] W 240000-270000
180000 O 210000-240000
HBIsec 150000 m 180000-210000
120000 i
90000 @ 150000-180000
ggggg H 120000-150000
0 [90000-120000
= < O 60000-80000
Not measured = o £ H 30000-50000
g o . 887 @ 0-30000
File size (KB) 8§ 3o °
5 Req size (KB)
o

The graph above shows single stream performance whesizi and request size are changed. The place
on the lower right that touches the floor of the drapnot actual data. Excel graphs empty cells as
containing a zero. This run was taken with the —a opli@me used the —A option then the area that was
not tested would have been tested and had real valuesalNottis is not a desirable area to test because
it is very time consuming to write a 512MB file in 4k tsfgr sizes. The —a option in lozone tells lozone to
discontinue use of transfer sizes less than 64k oncéelsize is 32MB or bigger. This saves quite a bit of
time. Notice the ridge that runs from the top lefthte lower right down the center of the graph. This is
where the request size fits in the processor cacbefil& sizes less than the size of the processtreca

you can see the rise in performance as well. Whentbetfile size and the transfer size is less than the
processor cache it rises even higher. Although istiergto see, it is unlikely that you will be ableget
applications to never write files that are bigger thengrocessor cacli® However it might be possible to
get applications to try to re-use buffers and keep thebsife smaller than the processor cache size.

Read Performance

T CPU cache effect
320000 —1 |

300000 L])]
280000 1 g i e S Buffer cache effect
250000
240000
220000
200000
180000

T | | = 300000-320000
A =) A 260000-300000
T T W 260000-280000
B 240000-260000
ot oo . B220000-240000
1| 0200000-220000
Egggg i ~L [T = 160000-200000
. = 160000-180000
100000 0140000-160000
50000 120000-140000
50000 2100000-120000
40000 = 50000-100000
20000 060000-60000
0 04000060000
920000-40000
=0-20000

[
f
]
AN
|
f
/

256

Not measured

40595

1024
1024

kB file

4096
G4
256

kB record Anomaly #1

163
B5536
16

262144

Anomaly #2

The graph above is an example of a real system with geresting “optimizations”. Here one can see
that there are some file sizes and some record thiaekave very bad performance. Notice the
performance dip at record sizes of 128Kbytes. (Anomaly ##&)eTis also a dropoff for file sizes of 8 MB
and larger. The dropoff for files greater than 8MB ig/nateresting since this machine has 16 GB of
memory and an 8GB buffer cache. This is a classic exaaipuning for a specific application. If the poor
system administrator ever installs an application tkaslto read or write files in a record size of 128
Kbytes to 1 Mbyte his users will probably take him owtibfr a conference. If the system would have
been characterized before it was purchased it would hewe made it into the building.

Another type of graph that can be produced is the LatemphgkVhen the -Q option is used lozone will
generate four .dat files. Rol.dat, wol.dat, rwol.dat @otdat. These are read offset latency, writeeiff
latency, rewrite offset latency and reread offatgricy. These files can be imported into Excel and then
graphed.

The latency versus offset information is useful foiregé there are any particular offsets in a file that
have high latencies. These high latencies can be causeddbiety of causes. An example would be if the
file size is just a bit bigger than the buffer cache.Sibe first time the file is written the latencyliMbe

low for each transfer. This is because the writeggaing into the buffer cache and the application is
allowed to continue immediately. The second time tleadiwritten the latencies will be very high. This is
due to the fact that the buffer cache is now compldtdilpf dirty data that must be written before the
buffer can be reused. The reason that this occurs whéitetrsebigger than the buffer cache is because the
write to the first block on the rewrite case willtriond the block in the buffer cache and will be forced to
clean a buffer before using it. The cleaning will take tand will cause a longer latency for the write to
complete. Another example is when the filesystem ignteml from a remote machine. The latency graphs
can help to identify high latencies for files that beeng accessed over the network. The following are a
few latency graphs for file I/O over an NFS versidilesystem.

Microseconds

Microseconds

NFS3 Write latency {4k transfers)

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

i
O o o= W o O 4 o= @ O OO & = O 0o o ™~ = W o O o = @ 0O O o = O 0o O
Mmoo o @ m» 4w @ Yo o = — = o= ~ O M W OO M@ o 4 @ O
—_ = — o o M M o = = =) L W @w 9w @9 P~ Pk~ P~ 0O 0 oD M@ o O O
Offset in file

NF 33 Rewrite latency (4k transfers)

1000

900

800

700

G600

500

400

300

200

a0

[u}
= wn

Offset in file

oo o o= @ o OO o~ = W o
m@w M 4 @ ®m 4w 0 Ym0 o— o=
— — = ™ NN Mmoo A = =

L e A I e A" N v Iy s ' I N o w S Y
— = F~ OO = ~ O M W OO M W o 4 O O
D @ W W@ - R~ @D m B o m 3 3

NFS3 Read Latency (dk transfers)

[I P P I

Hl

L |

9000

8000

7000

G000

5000
4000

SPUOIASOIINY

3000

2000

1000

a

=
w

P
Lo

™= W o O o =
=t —
[¥3] 2=}

96

o

Offset in the file

NFS33 Re-read latency (4k transfers)

40 -

35

30

Lo
&}

=
™

SPUOIASOIINY

18

10

266
036
az6
968
Fa8
ZER
0o0a
[EiET8
9L
FOL
i)
ars
803
945
Frs
A5
08y
ary
aly
FBE
Z5E
0zE
88z
957
i
6l
=]}
azl
96

]

[

Offset in file

In the re-read latency graph one can clearly sedligrg side cache that is in NFS Version 3. The reread
latencies are clearly not the latencies that onedwget if the reads actually went to the NFS server and
back.

Run rules:

If you wish to get accurate results for the entire rasfgeerformance for a platform you need to make sure
that the maximum file size that will be tested igdar than the buffer cache. If you don't know how big the
buffer cache is, or if it is a dynamic buffer cachert just set the maximum file size to be greater than th
total physical memory that is in the platform.
In general you should be able to see three or four plateaus.

File size fits in processor cache.

File size fits in buffer cache

File size is bigger than buffer cache.
You may see another plateau if the platform has a pyiarad secondary processor caches. If you don't
see at least 3 plateaus then you probably have thenuadile size set too small. lozone will default to a
maximum file size of 512 Mbytes. This is generally sudintibut for some very large systems you may
need to use the —g option to increase the maximumiZiée See the file Run_rules document in the
distribution for further information.

Source code availability
lozone is available for free. One might consider uditgfore your company purchases its next platform.
Additional notes on how to make the graphs

lozone sends Excel compatible output to standard owg.rii&y be redirected to a file and then processed
with Excel. The normal output for lozone as well askEReel portion are in the same output stream. So to
get the graphs one needs to scroll down to the Excebpaf the file and graph the data in that section.
There are several sets of graph data. "Writer repodfie example. When importing the file be sure to tell
Excel to import with "delimited" and then click next, thaitk on the "space delimited" button. To graph
the data just highlight the region containing the file sizé record size and then click on the graph wizard.
The type of graph used is "Surface". When the nextgliadx pops up you need to select "Columns".
After that the rest should be straight forward.

Contributors: http://www.iozone.org
Original Author: William D. Norcott. wnorcott@us.ata.com
Features & extensions: Don Capps capps@iozone.org

